参考文献/References:
[1] 国际高原医学会慢性高原病专家小组.第六届国际高原医学和低氧生理学术大会颁布慢性高原病青海诊断标准[J].青海医学院学报,2005,26(1):3-5.
[2] Leon-Velarde F,Maggiorini M,Reeves JT,et al.Consensus statement on chronic and subacute high altitude diseases[J].High Alt Med Biol,2005,6(2):147-157.
[3] 高文祥,高钰琪.慢性高原病分型、诊断与治疗的研究进展[J].第三军医大学学报,2016,38(5):431-436.
[4] Zhang H,He Y,Cui C,et al.Cross-altitude analysis suggests a turning point at the elevation of 4,500 m for polycythemia prevalence in Tibetans[J].Am J Hematol,2017,92(9):E552-E554.
[5] 白玛康卓,巴桑次仁,次仁央宗,等.不同海拔地区世居藏族人群高原红细胞增多症患病率的流行病学调查[J].第三军医大学学报,2016,38(3):220-225.
[6] 群勇.高原(拉萨)地区藏族新生儿红细胞增多症临床分析[J].西藏科技,2015(2):53-54.
[7] Julian CG,Gonzales M,Rodriguez A,et al.Perinatal hypoxia increases susceptibility to high-altitude polycythemia and attendant pulmonary vascular dysfunction[J].Am J Physiol Heart Circ Physiol,2015,309(4):H565-H573.
[8] 于前进,孔佩艳,曾东风,等.大豆异黄酮对高原人群血红蛋白值变化的多中心临床研究[J].第三军医大学学报,2015,37(7):666-671.
[9] Weidemann A,Johnson R.Biology of HIF-1α[J].Cell Death Differ,2008,15:621-627.
[10] 刘芳,魏巍,丁谨,等.HIF-2α对高原红细胞增多症模型大鼠骨髓CD71+细胞GATA-1表达的影响[J].中华血液学杂志,2016,37(8):696-701.
[11] Villafuerte FC.New genetic and physiological factors for excessive erythrocytosis and chronic mountain sickness[J].J Appl Physiol(1985),2015,119(12):1481-1486.
[12] 靳国恩,曹越,杨应忠,等.血清促红细胞生成素水平变化与高原红细胞增多症的关系[J].中华医学杂志,2006,26(10):708-709.
[13] Liu YS,Huang H,Zhou SM,et al.Excessive iron availability caused by disorders of interleukin-10 and interleukin-22 contributes to high altitude polycythemia[J].Front Physiol,2018,9:548-552.
[14] Villafuerte FC,Macarlupu JL,Anza-Ramirez C,et al.Decreased plasma soluble erythropoietin receptor in high-altitude excessive erythrocytosis and chronic mountain sickness[J].J Appl Physiol(1985),2014,117(11):1356-1362.
[15] Villafuerte FC,Corante N,Anza-Ramirez C,et al.Plasma soluble erythropoietin receptor is decreased during sleep in Andean highlanders with chronic mountain sickness[J].J Appl Physiol(1985),2016,121(1):53-58.
[16] Healy K,Labrique AB,Miranda JJ,et al.Dark adaptation at high altitude:an unexpected pupillary response to chronic hypoxia in andean highlanders[J].High Alt Med Biol,2016,17(3):208-213.
[17] Montero D,Lundby C.Arterial oxygen content regulates plasma erythropoietin independent of arterial oxygen tension:a blinded crossover study[J].Kidney Int,2019,95(1):173-177.
[18] Li R,Zhao Y,Fan W,et al.Possible association between polymorphisms of human vascular endothelial growth factor a gene and susceptibility to glioma in a Chinese population[J].Int J Cancer,2011,128(1):166-175.
[19] Ding H,Liu Q,Hua M,et al.Associations between vascular endothelial growth factor ge-ne polymorphisms and susceptibility to acute mountain sickness[J].J Int Med Res,2012,40(6):2135-2144.
[20] Ma L,Chen Y,Jin G,et al.Vascular endothelial growth factor as a prognostic parameter in subjects with “plateau red face”[J].High Alt Med Biol,2015,16(2):147-153.
[21] Calderón-Gerstein W,López-Pe?a A,Macha-Ramírez R,et al.Endothelial dysfunction assessment by flow-mediated dilation in a high-altitude population[J].Vas Health Risk Manag,2017,13:421-426.
[22] Okumiya K,Sakamoto R,Ishimoto Y,et al.Glucose intolerance associated with hypoxia in people living at high altitudes in the Tibetan highland[J].BMJ Open,2016,6(2):e9728-e9732.
[23] Liu C,B L,EL Z,et al.Elevated pentose phosphate pathway is involved in the recovery of hypoxia-induced erythrocytosis[J].Mol Med Rep,2017,16(6):9441-9444.
[24] Maria M,Pavle M,Brian K,et al.HIF-2α,but not HIF-1α,promotes iron absorption in mice.[J].J Clin In,2009,119(5):1159-1166.
[25] 于前进,孔佩艳.与高原红细胞增多症有关的血清炎症因子的研究进展[J].西南国防医药,2014,24(9):1026-1027.
[26] Li P,Zheng SJ,Jiang CH,et al.Th2 lymphocytes migrating to the bone marrow under high-altitude hypoxia promote erythropoiesis via activin A and interleukin-9[J].Exp Hematol,2014,42(9):804-815.
[27] 于前进.高原红细胞增多症患者发病因素及其血清炎症细胞因子的探索研究[D].第三军医大学,2015.
[28] Wang CY,Canali S,Bayer A,et al.Iron,erythropoietin,and inflammation regulate hepcidin in Bmp2-deficient mice,but serum iron fails to induce hepcidin in Bmp6-deficient mice[J].Am J Hematol,2019,94(2):240-248.
[29] 陈郁,蒋春华,罗勇军,等.EPAS1基因rs6756667及rs7583392多态性与汉族男性高原红细胞增多症的相关性研究[J].解放军医学杂志,2012,37(12):1120-1124.
[30] Xu J,Yang YZ,Tang F,et al.EPAS1 gene polymorphisms are associated with high altitude polycythemia in tibetans at the qinghai-tibetan plateau[J].Wild Env Med,2015,26(3):288-294.
[31] Zhao Y,Zhang Z,Liu L,et al.Associations of high altitude polycythemia with polymorp-hisms in EPAS1,ITGA6 and ERBB4 in Chinese Han and Tibetan populations[J].Oncotarget,2017,8(49):86736-86746.
[32] Peng Y,Cui C,He Y,et al.Down-Regulation of EPAS1 transcription and genetic adaptation of tibetans to high-altitude hypoxia[J].Mol Biol Evol,2017,34(4):818-830.
[33] Xiang K,Ouzhuluobu,Peng Y,et al.Identification of a Tibetan-specific mutation in the hypoxic gene EGLN1 and its contribution to high-altitude adaptation[J].Mol Biol Evol,2013,30(8):1889-1898.
[34] Azad P,Zhao HW,Cabrales P J,et al.Senp1 drives hypoxia-induced polycythemia via GATA1 and Bcl-xL in subjects with Monge’s disease[J].J Exp Med,2016,213(12):2729-2744.
[35] 刘芳,丁瑾,魏巍,等.GATA-1对高原红细胞增多症模型大鼠骨髓CD71+细胞EpoR表达的影响[J].中国实验血液学杂志,2016,24(3):884-891.
[36] Xu J,Yang YZ,Tang F,et al.CYP17A1 and CYP2E1 variants associated with high altitude polycythemia in Tibetans at the Qinghai-Tibetan Plateau[J].Gene,2015,566(2):257-263.
[37] Liu L,Zhang Y,Zhang Z,et al.Associations of high altitude polycythemia with polymor-phisms in EPHA2 and AGT in Chinese Han and Tibetan populations[J].Oncotarget,2017,8(32):53234-53243.
[38] Fan X,Ma L,Zhang Z,et al.Associations of high-altitude polycythemia with polymorphisms in PIK3CD and COL4A3 in Tibetan populations[J].Hum Genomics,2018,12(1):37-39.
[39] Chen Y,Jiang C,Luo Y,et al.An EPAS1 haplotype is associated with high altitude poly-cythemia in male Han Chinese at the Qinghai-Tibetan plateau[J].Wild Env Med,2014,25(4):392-400.
[40] Jiang L,Peng J,Huang M,et al.Differentiation analysis for estimating individual ancestry from the Tibetan Plateau by an archaic altitude adaptation EPAS1 haplotype among East Asian populations[J].Int J Legal Med,2018,132(6):1527-1535.
[41] Chen Y,Jiang C,Luo Y,et al.Interaction of CARD14,SENP1 and VEGFA polymorphisms on susceptibility to high altitude polycythemia in the Han Chinese population at the Qinghai-Tibetan Plateau[J].Blood Cells Mol Disease,2016,57:13-22.
[42] Lorenzo F R,Huff C,Myllymaki M,et al.A genetic mechanism for Tibetan high-altitude adaptation[J].Nat Genet,2014,46(9):951-956.